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ABSTRACT Atherosclerosis, the gradual formation of a lipid-
rich plague in the arterial wall is the primary cause of Coronary
Artery Disease (CAD), the leading cause of mortality world-
wide. Hypercholesterolemia, elevated circulating cholesterol,
was identified as a key risk factor for CAD in epidemiological
studies. Since the approval of Mevacor in 1987, the primary
therapeutic intervention for hypercholesterolemia has been
statins, drugs that inhibit the biosynthesis of cholesterol. With
improved understanding of the risks associated with elevated
cholesterol levels, health agencies are recommending reduc-
tions in cholesterol that are not achievable in every patient with
statins alone, underlying the need for improved combination
therapies. The whole body cholesterol pool is derived from
two sources, biosynthesis and diet. Although statins are effective
at reducing the biosynthesis of cholesterol, they do not inhibit
the absorption of cholesterol, making this an attractive target for
adjunct therapies. This report summarizes the efforts to target
the gastrointestinal absorption of cholesterol, with emphasis on
specifically targeting the gastrointestinal tract to avoid the off-
target effects sometimes associated with systemic exposure.
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ABBREVIATIONS

ABC ATP-binding cassette

ACAT Acyl CoA cholesterol Acyl transferase
Apo apolipoprotein

ASO antisense oligonucleotides

BAS bile acid sequestrants

CAD coronary artery disease

LDL low-density lipoproteins

LXR liver X receptor

MTP microsomal triglyceride transfer protein
NPCILI  Niemann Pick C | Like |

NSAS nanostructured aluminosilicate

RNA RNA interference

SREBP sterol regulatory element binding protein
INTRODUCTION

Coronary artery disease (CAD) is the leading cause of mor-
bidity and mortality in developed countries and its prevalence
1s increasing worldwide (1,2). Although CAD is a complex
disease with a range of etiologies, the dominant underlying
cause 1s atherosclerosis, the gradual formation of a lipid-rich
plaque and thickening of the arterial wall, reviewed in (3).
Large world-wide epidemiological studies demonstrate that
elevated circulating cholesterol i1s a key risk factor for the
development of CAD (4-9). The primary therapy for hyper-
cholesterolemia is a regimen of HMG CoA Reductase inhib-
itors (statins), pharmacological agents that inhibit the
biosynthesis of cholesterol. The risk of serious coronary events
decreases by 22% for every 40 mg/dL reduction in circulating
cholesterol carried by low-density lipoproteins (LDL), demon-
strated by meta-analyses of large post-market statin trials (10).
As the evidence linking LDL-cholesterol levels with CAD risk
becomes clearer, there is a clinical imperative for further
reductions in LDL-cholesterol (11). Current clinical guidelines
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suggest target plasma LDL cholesterol levels of less than
100 mg/dL (2.5 mmol/L) for patients with moderately high
risk or high risk for CAD (12-14). Unfortunately, these levels
are not achievable with statin monotherapy in every patient
population and an estimated 25% of high-risk patients fail to
achieve treatment goals (3). Treatment with statins alone may
be insufficient in patients genetically predisposed to high
LDL-cholesterol levels (15,16), patients taking other medica-
tions that interact with statins (17,18), or patients who cannot
tolerate the higher doses of statins that may be required for
treatment success (19).

The circulating cholesterol pool is derived from two sour-
ces: de novo synthests and diet. Although statins are effective at
reducing the biosynthesis of cholesterol, they do not inhibit the
absorption of cholesterol (biliary and dietary derived) in the
intestine. In fact, treatment with statins may increase choles-
terol absorption (20-22). Likewise, inhibition of cholesterol
absorption is accompanied by increased cholesterol synthesis
(23,24). These clinical observations suggest that further reduc-
tions in LDL~cholesterol can be achieved by combining statin
therapy with agents that target cholesterol absorption (25).
Cholesterol absorption is a complex process that occurs in
three distinct phases: solubilization in the gastrointestinal lu-
men, uptake into enterocytes in the proximal jejunum, and
intracellular transport and packaging of the cholesterol into
chylomicrons for secretion to the lymphatic system. The extent
of cholesterol absorption from the intestine varies broadly in
humans with values ranging from 15% to 80%, with an
average of about 50% (23,26-29). The high variability sug-
gests a genetic component in the regulation of intestinal ab-
sorption of cholesterol, reviewed in (30). The intestine
processes 1200-1700 mg of cholesterol per day originating
from three sources, diet (300-500 mg/day), bile (700—
1300 mg/day), and sloughing of the intestinal epithelium
(200-300 mg/day) (31-34). Each stage in the cholesterol ab-
sorption process can be targeted for pharmacological interven-
tion. Recently, scientific focus has been on developing agents
that act in the small intestine without being taken up into the
circulatory system. The goal of this approach is to minimize
the potential for systemic adverse events and off-target effects.
Throughout this paper, we will focus on this concept as we
review developments in our understanding of intraluminal and
intracellular events in cholesterol absorption and the new
potential pharmacological interventions for these targets.

DISRUPTING THE INTRALUMINAL PROCESSING
OF CHOLESTEROL

Phytosterols

Plants produce a range of chemicals with structural and
chemical similarity to cholesterol, collectively referred to as
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phytosterols (35). As shown in Fig. 1, plant sterols have the
same sterol ring structure but differ from cholesterol in the
side chain. Plant stanols are less common in nature, these
molecules differ from cholesterol in that they contain a
saturated sterol ring as well as side chain modifications
(36). Of the more than 250 unique plant sterols discovered,
the most common are campesterol, stigmasterol and -
sitosterol (Fig. 1) (35,36). Although the amount of phytoster-
ols in Western diet is similar to the amount of cholesterol
(~300 mg/day), there is very little systemic exposure of plant
sterols (bioavailability ranges from 0.4%—3.5%) (37—41).
Genetic analyses of the rare human disease Sitosterolemia,
in which patients hyper absorb both cholesterol and plant
sterols, identified two genes in the uncontrolled absorption
of sterols: ABCGS and ABCGS (42,43), these genes encode
half-transporters that function together as a barrier to sterol
absorption (43,44).

The first clinical studies using crude extracts of plant
sterols to decrease plasma cholesterol were published in
the 1950s (45,46). Further studies in humans and animal
models confirmed that plant sterols reduce the fractional
absorption of cholesterol leading to reductions in LDL-
cholesterol (24,39,40,47,48). In animal models, plant stanols
are more potent inhibitors of cholesterol absorption than
plant sterols (47,49-52), and show better effects on im-
proved atherosclerotic lesion progression (53). Because of
the demonstrated hypocholesterolemic activity of phytoster-
ols and phytostanols, these agents are incorporated into
nutritional products and labeled as functional foods. In
many cases, the plant sterols are esterified with fatty acids
to increase the incorporation capacity (47). A recent meta-
analysis of 84 randomized clinical trials of plant sterols
demonstrates that there is a non-linear dose response be-
tween LDL-cholesterol reductions and intake of plant sterols
(54). The mean 8.8% reduction in LDL-cholesterol is
achieved with a daily dose of 2.15 g of phytosterols; there
were minimal improvements to LDL-cholesterol lowering at
further doses (up to 10 g/day). In humans, LDL-cholesterol
lowering is the same when plant sterols or plant stanols are
used as the active ingredient.

Many attempts have been made to modify phytosterols to
improve their activity (55). Perhaps the most studied mod-
ified phytosterol is disodium ascorbyl phytostanol phosphate
(also known as FM-VP4), a water-soluble derivative of sitos-
tanol and campestanol prepared by esterification with an
ascorbyl-phosphate group (Fig. 2). FM-VP4 effectively
reduces cholesterol absorption and circulating cholesterol
levels in rats, gerbils and mice (56—59). The cholesterol
lowering effect also reduces atherosclerotic lesion formation
in a murine model of atherosclerosis, the Apolipoprotein
(Apo) E knockout mouse (60). Interestingly, FM-VP4 is also
an effective anti-obesity agent, preventing weight gain on a
high fat diet (61). Intervention with FM-VP4 in pre-obese
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Fig. I Chemical structure of cholesterol, three common plant sterols (sitosterol, campesterol, and stigmasterol), and the saturated derivatives, plant stanols
(sitostanol and campestanol). Note that stigmastanol is identical to sitostanol.

mice on a high fat diet restores the mice to a lean phenotype VP4 is well tolerated, and reduces LDL cholesterol by 7%
as shown by reduced body mass and fat content, perhaps ~ compared to baseline level, or by 10% compared to placebo
explained by an improved metabolic scope (62). FM-VP4 is  (64). The LDL-cholesterol lowering observed in the Phase 11
also more effective in reducing plasma cholesterol levels  trial was not sufficient to warrant further development of
than free phytostanols in hamsters (63). Clinically, FM-  FM-VP4.

Fig. 2 Chemical structure of R
the modified plant stanol, FM-VP4.
The compound is a mixture of
ascorbic acid linked by a phospho-
diester bond to campestanol
(R=CHz) or sitostanol (R=C,Hs).

R = CHj; (campestanol)

R = CH,CHj5 (sitostanal)
HO o .
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Despite extensive clinical evidence that phytosterols are
effective cholesterol inhibitors, there is considerable debate
about their mechanism of action. The long-held belief is that
the poorly water soluble phytosterols compete with choles-
terol for incorporation into mixed micelles, comprised of
dietary fat, bile acids and sterols (39,65—68). Without parti-
tioning into the micelle phase, cholesterol is unable to cross
the unstirred water layer surrounding the intestinal wall and
cannot be taken up by enterocytes for subsequent packaging
into chylomicrons. This mechanism does not impact fat
absorption, as demonstrated in a recent clinical experiment
using intubated volunteers. The administration of phytos-
terols with a meal significantly decreased the transfer of
cholesterol to the aqueous (micelle) phase without disrupting
triacylglycerol hydrolysis or absorption (69). Recent studies
suggest that phytosterols may have other effects that con-
tribute to their LDL-cholesterol lowering properties, though
many of the studies have contradictory findings depending
on the study design (39). Phytosterols may be agonists for the
liver X receptor (LXR) (70,71), a nuclear receptor respon-
sible for up regulating cholesterol efflux pathways through-
out the body (72). This 1s discussed in more detail as an
intracellular intervention, below. Phytosterols also suppress
de novo synthesis of cholesterol in rats, similar to statin ther-
apy (73). In cell culture, phytosterols can interfere with
intracellular cholesterol trafficking in some intestinal cell
lines (74), but not in hamsters or other cell lines (75,76).
The consumption of phytosterols has been associated with
reduced production of triacylglycerol-rich ApoB-containing
lipoproteins, the precursor to LDL (77). Despite the contro-
versies surrounding the mechanism of action, clinical evi-
dence suggests that these cholesterol analogs inhibit
cholesterol absorption with downstream effects on choles-
terol metabolism throughout the body (35,39,54).

Bile Acid Sequestrants

The primary mechanism by which humans remove excess
cholesterol is catabolism into bile acids. Bile acids are
charged cholesterol-derived molecules that are essential for
the proper digestion of fat, fat-soluble vitamins, and choles-
terol. The human liver catabolizes 500 mg of cholesterol per
day into bile acids, while >95% of the bile acids secreted
into the intestinal lumen are reabsorbed in the distal diges-
tive tract (78,79). Traditional bile acid sequestrants (BAS)
such as cholestyramine and colestipol are large, positively
charged resins that non-specifically bind to negatively
charged bile acids in the intestine (80,81). Colesevelam, a
second generation BAS approved in 2000 (82-84), differs
from traditional BAS in that it is a polymer designed to
specifically adsorb bile acids. The precipitated bile acids
cannot be reabsorbed in the distal ileum and are excreted
in feces. By disrupting the enterohepatic circulation of bile
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acids, the bile acid pool is depleted and the liver increases
synthesis of bile acids from cholesterol stores to compensate
(85—88). The LDL receptor is up-regulated in response to
the reduction in hepatic cholesterol, increasing LDL clear-
ance (89,90). BAS monotherapy can reduce LDL-
cholesterol by 9-18% (See Table I) and can improve the
LDL-cholesterol lowering capacity of statins by an addition-
al 4-17% (91).

Studies in genetically modified mice show that decreasing
the bile acid pool causes cholesterol absorption to drop to
<5% (92,93). Based on these findings treatment with BAS is
hypothesized to reduce cholesterol absorption, confirmed in
animal (94,95) and human studies (96). These findings are
contradicted by studies demonstrating that BAS have no effect
on neutral sterol excretion (97,98). A time course study in
humans shows that BAS reduce cholesterol absorption by
38% upon administration but there is a long-term increase
in cholesterol absorption (99). The temporal nature of BAS-
mediated inhibition of cholesterol absorption may explain
some of the variability in the literature surrounding this field.

Although BAS have been in clinical use for over 40 years
and have an excellent safety record, particular patient groups
do not tolerate them. Treatment with BAS increases circulat-
ing triacylglycerol levels and they are contraindicated for
patients with hypertriglyceridemia (100). While the precise
mechanism by which BAS induce hypertriglyceridemia has
yet to be determined, it is likely through the activation of the
SREBP-1c¢ transcription factor, which induces the expression
of lipogenic genes, caused by reductions in the hepatic bile
acid pool (101). BAS are not absorbed into the circulatory
system and consequently are not associated with systemic side
effects. The most common undesired effect of BAS therapy is
gastrointestinal distress, leading to poor compliance. New
BAS, like colesevelam, are more potent and can be adminis-
tered at lower doses, with fewer side effects (81,102). Future
therapies targeting the bile acid pathway will have further
improvements to potency, perhaps for particular classes of
bile acids. Bile acid feeding studies in mice demonstrate that
altering the composition of the bile acid pool can impact
cholesterol absorption (103,104). Improved potency will re-
duce the non-specific binding of BAS to co-administered
drugs, reducing the drug-drug interactions that may limit
the use of BAS for some patient groups (80,102,105). Other
groups are addressing this issue by creating new inhibitors that
target the bile acid uptake pathway rather than bile
acids themselves (106,107). It remains to be seen whether
these new approaches will improve clinical options for
hypercholesterolemia.

Sequestration of Cholesterol

In addition to interactions with bile acids, cholestyramine
and other molecules bind and sequester cholesterol directly
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(108,109). One class of compounds with intraluminal cho-
lesterol binding properties is dietary fiber. Dietary fibers are
plant-derived complex carbohydrates that are neither
digested nor absorbed by the body (110), and yet, epidemi-
ological studies link their consumption with reduced risk of
coronary artery disease (111-116). Because of these studies,
cardiovascular health guidelines in North America and
Europe suggest increasing dietary fiber consumption along
with other lifestyle modifications as the primary action for
people with hypercholesterolemia (12—14,117). Dietary fiber
is generally categorized as being either water-soluble/gel-
forming (guar gum, B-glucan, pectin, psyllium) or water
insoluble (cellulose, lignins). A meta-analysis revealed that
while all dietary fibers reduce the risk of heart disease, it is
only water-soluble dietary fibers that contribute to LDL-
cholesterol lowering (118). The reductions in LDL-
cholesterol are likely through increased clearance of circu-
lating LDL (119), linked with the inhibition of cholesterol
absorption (120,121) due to the gel-like properties of the
soluble fibers (122,123).

The LDL-cholesterol lowering effects of dietary fiber are
modest, compared with pharmacological options. Conse-
quently, a number of synthetic fibers have been tested for
their ability to sequester cholesterol. The most studied of these
is a copolymer of an 18-Carbon a-olefin and maleic acid
(surfomer). Surfomer inhibits cholesterol absorption by
30%-50% in a variety of animal models (124—126). Humans
treated with surfomer have a 25% reduction in cholesterol
absorption accompanied by a 12% reduction in LDL-
cholesterol (127). Despite promising results in these early

A

Fig. 3 A diagram of the general
montmorillonite crystal structure.
Montmorillonite usually has a
layer-lattice structure consisting of
two sheets of tetrahedral silicon
crystals enclosing a sheet of octa-
hedral aluminium crystals. Water
and surface cations enter be-
tween adjacent silicon sheets
causing the material to expand.
Substances adsorb to external

9.2t09.6 A

surfaces or within the interlaminar ®
space. Adapted with permission v
from Hendricks SB. J Phys Chem. X
45(1):65-81. Copyright 1941 H,0

American Chemical Society.
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studies, no further development of surfomer has been
reported. Olestra, a non-absorbed sucrose polyester analogue
of triacylglycerol used as an anti-obesity agent, also reduces
cholesterol absorption by 50% (128,129). Development of
Olestra as a hypocholesterolemic agent was discontinued
due to gastrointestinal effects and a failure to reduce LDL-
cholesterol by 15% in a double blind clinical trial (130).
Recent work in our laboratory has probed the hypocho-
lesterolemic properties of surface modified nanostructured
aluminosilicate (NSAS). These compounds belong to the
montmorillonite minerals family, commonly referred to as
bentonite clays. NSAS have a unique aluminosilicate plate-
let structure with a high surface arca (200-800 m” per
gram). In contrast to the positively charged bile acid seques-
trants, NSAS platelets are negatively charged. Surface pro-
tons are incorporated to counterbalance the negative charge
in the platelets. NSAS are fine particles that can adsorb
water and organic materials both within their inter-
laminar space and on external surfaces (131), see Fig. 3 for
a diagram. Pepto-Bismol contains a different purified mont-
morillonite clay called Veegum that adsorbs bile acids (132).
Studies in rats revealed that the purified protonated form of
NSAS reduces cholesterol absorption by 39%, similar to an
identical dose of stigmasterol (133). Chronic administration
of NSAS reduces circulating cholesterol levels in ApoE
knockout mice over 12 weeks leading to reductions in ath-
erosclerotic lesion formation at the aortic root (134). In an
vitro lipolysis assay, protonated NSAS specifically adsorbs
cholesterol, sequestering it from the aqueous phase of the
digestive milieu (109). This differs from cholestyramine,
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which non-specifically binds bile acids, cholesterol, and tri-
acylglycerol (109). Additional studies assessing the toxicity of
protonated NSAS and vitamin absorption are currently in
progress. The specificity of cholesterol sequestration, the
lack of systemic exposure, and the ability to reduce athero-
sclerotic lesion formation in animal models suggest that
protonated NSAS may be a viable adjunct therapy with
statins for hypercholesterolemic patients.

INTRACELLULAR PHARMACOLOGICAL TARGETS

Understanding the processes that govern the trans-
cellular movement of cholesterol across the absorptive
cells of the intestinal tract is of particular interest for
the development of new drugs for the treatment of
CAD. In order for cholesterol to be transported into
the body, it is packaged in a unique lipoprotein pro-
duced by the intestine called a chylomicron. Three com-
plementary pathways must converge for the synthesis of
these lipoproteins. (A) Cholesterol must be taken up by
the cell and packaged in nascent chylomicrons for secre-
tion into the lymphatic system. (B) Dietary fats must be
taken up by the enterocyte, assembled into triacylgly-
cerol, and packaged onto the nascent chylomicron. (C)
ApoB-48, the protein scaffold for chylomicrons, must be
synthesized in the endoplasmic reticulum and trafficked
to the Golgi apparatus for assembly of the mature chy-
lomicron prior to secretion into the lymph. Pharmaco-
logical iterruption of any of these pathways will affect
the efficiency and magnitude of cholesterol absorption.

Ezetimibe

Ezetimibe is the first new pharmacological treatment for
hypercholesterolemia since the discovery of statins. Unlike
a majority of new drugs, ezetimibe was developed without a
clear molecular target (135). Ezetimibe (and its analogues)
were discovered while screening for cholesterol esterification
inhibitors (discussed in section “Acyl CoA: Cholesterol Acyl
Transferase (ACAT) Inhibitors”). Ezetimibe does not direct-
ly inhibit the esterification of cholesterol, yet blocks absorp-
tion. The development of the chemistry was guided by the
cholesterol absorption activity in the cholesterol-fed hamster
(135). Using radiolabeled compounds, Davis ¢t al. demon-
strated that ezetimibe and its active phenolic glucuronide
act at the level of the brush border membrane in the small
intestine (136). Cholesterol is taken up into the brush border
membrane of columnar absorptive cells, called enterocytes,
from mixed micelles in the gastrointestinal lumen. Upon
uptake into the plasma membrane, cholesterol is subjected
to competing molecular pathways (Fig. 4). Two hemi-ATP-
binding cassette (ABC) transporters, ABCG5 and ABCGS,

dimerize to form a complete transporter that actively effluxes
both cholesterol and phytosterols back into the intestinal
lumen (137,138). Loss of function mutations to ABCG5/G8
cause sitosterolemia, characterized by unregulated sterol ab-
sorption leading to premature CAD and the formation of
subcutaneous cholesterol deposits called xanthomas
(30,42,43,139,140). In opposition to the actions of ABCG5/
G8 is the absorptive pathway that is targeted by ezetimibe.

In 2004, Altmann e al. proposed that the target of ezeti-
mibe was a previously uncharacterized protein called Nie-
mann Pick C1 Like 1 (NPCI1LI), supported by studies in
knockout mice (141). Although this assertion was initially
controversial, and several studies refuted the finding, it is
now generally acknowledged that ezetimibe inhibits choles-
terol absorption by binding to an extracellular loop of
NPCILI (142). Ezetimibe binding precludes the internali-
zation of NPC1L1, thereby preventing it from chaperoning
the transport of cholesterol from the plasma membrane to
the endoplasmic reticulum (143-146). Clinical development
of ezetimibe demonstrated that 10 mg/day was sufficient to
reduce cholesterol absorption by >50%, which reduces
LDL-cholesterol by 20% (23). Ezetimibe-simvastatin co-
therapy can reduce LDL cholesterol by 25% beyond the
LDL-cholesterol lowering of simvastatin alone (147). Ezeti-
mibe monotherapy is accompanied by an increase in endog-
enous cholesterol production, making it a logical choice for
co-therapy with a statin (23,24). Several large post-approval
studies have confirmed that ezetimibe and simvastatin co-
therapy reduces LDL cholesterol by 16.5% further than
simvastatin alone in patients with familial hypercholesterol-
emia (148). This finding was recently confirmed in a less
severe cohort (149). Although ezetimibe has proven to be an
effective adjunct therapy for the reduction in circulating
LDL cholesterol, neither of these large trials detected a
reduction in atherosclerotic burden, leading to questions
about how best to assess improvements in cardiovascular
health (150,151). Despite continued debate about how best
to evaluate progression or regression of atherosclerosis in the
clinic, LDL-cholesterol is a long established risk factor for
coronary artery disease that is significantly reduced by treat-
ment with ezetimibe, particularly when coupled to treatment
with statins.

LXR Agonists

The efflux of cholesterol from enterocytes is driven by the
actions of ABC transporters. The heterodimer ABCG5/G8
moves cholesterol back to the intestinal lumen while ABCAI
shuttles cholesterol onto lipid-poor ApoAl in the portal vein
(see Fig. 4). The Liver X Receptor (LXR) exerts transcrip-
tional control over both of these transporters (152). Trans-
genic mouse models show that induction of 4b¢gh and Abcg8
genes is sufficient to reduce cholesterol absorption and
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the enterocyte and are taken up into the brush border membrane. (a) Bile acid sequestrants adsorb bile acids, preventing them from incorporating into
mixed micelles. (b) Plant sterols compete with cholesterol for incorporation into the mixed micelles and/or stimulate efflux from the cell membrane. (c)
Cholesterol sequestrants, including nanostructured aluminosilicates (NSAS) and soluble dietary fibers prevent cholesterol from crossing the unstirred water
layer. (d) Ezetimibe binds to Niemann Pick CI Like | (NPCILI) and prevents the internalization of the protein, retaining cholesterol in the plasma
membrane, where it is effluxed by the dimer of ATP-binding cassette transporters ABCG5/ABCGS. (e) Liver X Receptor (LXR) agonists increase the
expression of cholesterol efflux genes, including ABCG5/G8. (f) Acyl CoA Cholesterol Acyltransferase 2 (ACAT?2) inhibitors prevent cholesterol esterification
in the endoplasmic reticulum, a step that is required for incorporation of cholesterol into nascent chylomicrons. (g) Microsomal Triacylglycerol Transfer
Protein (MTP) inhibitors block the transfer of newly reassembled triacylglycerol to the ApoB-48 polypeptide as it is being translated in the rough endoplasmic
reticulum, degrading the polypeptide and reducing chylomicron formation. (h) Antisense oligonucleotides and/or siRNA target mRNA that encodes ApoB-
48 to decrease secretion of chylomicrons into the lymphatic system. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell
Biology (reference 141), copyright 2008. http://ww.nature.com/nrm/index.html.

attenuate atherosclerosis (138,153). Mice treated with the  an option for reducing cholesterol absorption (154). First
LXR agonist T0901397 have reduced cholesterol absorp-  generation LXR agonists are effective at stimulating choles-
tion, suggesting that pharmacological stimulation of LXR is  terol efflux from atherosclerotic lesions (72,155); however,
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they also induce the expression of lipogenic genes (156,157)
leading to hepatic steatosis. The undesired effects of fatty
liver may be addressed through the synthesis of a new
generation of LXR agonists, or by targeted drug delivery
to the intestine. Despite a number of hurdles to overcome,
development of LXR agonists remains an area of active
research in cardiovascular disease.

Acyl CoA: Cholesterol Acyl Transferase (ACAT)
Inhibitors

Cholesterol that is moved from the brush border membrane
to intracellular membranes must be esterified prior to as-
sembly in chylomicrons. The esterification of cholesterol
with free fatty acids occurs in the endoplasmic reticulum
and is catalyzed by the enzyme Acyl CoA Cholesterol Acyl
Transferase (ACAT) (158,159). The inhibition of ACAT is
proposed to reduce the absorption of cholesterol by prevent-
ing the movement of cholesterol into nascent chylomicrons
(160). Three groups simultaneously discovered that there
are two 1soforms of ACAT in the body: ACAT | and ACAT
2 (161-163). ACAT 1 is expressed ubiquitously whereas
ACAT 2 is only found in the small intestine and the liver
(161,164-166). Clinical development of ACAT inhibitors
began before the discovery of multiple isoforms and
consequently they target both ACAT] and ACAT?2.
The subsequent analysis of knockout mice explains
why the first generation of ACAT inhibitors has not been
clhinically successful (Table I).

Mice lacking ACAT1 or ACAT2 have dramatically
different metabolic phenotypes. Mice lacking ACAT 1
cross-bred with murine models of atherosclerosis (LDL
receptor knockout or ApoE knockout mice) develop xan-
thomas and increased atherosclerosis, despite reductions
in circulating cholesterol (167,168). In comparison, mice
lacking ACAT 2 have a favorable phenotype including
reduced cholesterol absorption and resistance to dietary
induced hypercholesterolemia and gallstones (158,159).
The first ACAT inhibitor to reach clinical development
was avasimibe. Despite promising preclinical data, treat-
ment with avasimibe did not improve atherosclerosis
(169), and induced the expression of drug metabolizing
enzymes (170). The second ACAT inhibitor tested in
clinical trials, pactimibe, did not improve atherosclerosis,
in fact worsened progression of the disease in two specific
analyses (171). It has been widely speculated that these
two clinical trials failed to demonstrate the value of
ACAT mbhibition because they non-specifically inhibited
both isoforms of ACAT (172). Although ACAT?2 inhibi-
tion 1s hypothesized to be beneficial, based on genetically
modified mouse studies (158,160,172,173), none of the
isotype-specific inhibitors currently in development (174)
have been tested clinically at the time of this review.

Microsomal Triacylglycerol Transfer Protein (MTP)
Inhibitors

Although chylomicrons transport cholesterol, they are pri-
marily composed of triacylglycerol (175). Inadequate lipida-
tion of the ApoB polypeptide as it is being translated in the
ribosome causes misfolding and subsequent degradation of
ApoB-48, blocking the secretion of chylomicrons into the
lymphatic system (Fig. 4). Dietary fats are broken down into
fatty acids and monoacylglycerol by lipases in the intestinal
lumen prior to absorption by enterocytes. Once in the
intestinal cell, they are repackaged as triacylglycerol mole-
cules and bind to a transfer protein called Microsomal
Triacylglycerol Transfer Protein (MTP) (176). By inhibiting
MTP, the lipid transfer actions are disrupted and there is a
reduction in the production of triacylglycerol-rich lipopro-
teins (177). This is an attractive target for new therapeutics
as inhibition of intestinal MTP addresses two health issues
simultaneously: the absorption of excess dietary fat and the
absorption of cholesterol by reducing chylomicron
production.

At the time of this review, five inhibitors have entered
the drug development process: Lomitapide (also called
AEGR-733, BMS-201038), Implitamibe (also called
BAY-13-9953), JTT 130, CP 346086, and SLx 4090.
Each of these inhibitors reduces circulating cholesterol,
ApoB-containing lipoproteins, and triacylglycerol in pre-
clinical animal studies (177-185). In clinical trials, both
CP-346086 and Lomitapide reduce circulating cholesterol
and triacylglycerol in hyperlipidemic patients (180,186—188).
In both studies, a subset of the patients treated with MTP
inhibitor had increased gastrointestinal disturbances and
mild increases to liver transaminase levels, causing con-
cerns for the continued development of these inhibitors. In
animal studies, MTP inhibition can increase triacylglycerol
storage in the liver and in the intestine perhaps accounting
for both the increases in hepatic liver enzymes and gas-
trointestinal side effects of MTP inhibittion (177,189,190).
In order to avoid these complications, new, intestine-specific,
MTP inhibitors are being developed that lack systemic
absorption, such as SLx4090 (184,191). The viability of
inhibiting intestinal MTP as a means of reducing cho-
lesterol absorption will depend on the outcome of studies
using these inhibitors.

ApoB Transcription Inhibitors

While MTP inhibition indirectly degrades ApoB, several
groups have attempted to target the production of ApoB
directly. Circulating levels of ApoB-48 increase after feeding
but ingestion of fat does not appear to regulate APOB
transcription. Small dense lipoproteins containing ApoB-
48 are secreted by the intestine, even in the fasted state
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(192). Rather, the enterocyte retains a store of small dense
chylomicron precursors for rapid response to feeding
(193—-195). Transcription of APOB appears to be constitu-
tively active, and production of ApoB lipoproteins is regu-
lated through degradation (196,197). Because there is no
known activator of gene expression to inhibit pharmacolog-
ically, APOB mRINA has been targeted directly. Both anti-
sense oligonucleotides (ASO) and RNA interference (RNA)
strategies successfully reduce ApoB. These techniques utilize
short strands of nucleic acids with complementary sequences
to the mRNA of the gene being targeted (198). Although
both technologies degrade mRNA after binding to compli-
mentary sequences, ASO and RNAi accomplish this
through different mechanisms (199,200). At present, ApoB
mRNA targeting has only been utilized to prevent the
formation of hepatic lipoproteins (201-204); however, tar-
geting intestinal ApoB production with next-generation si-
lencing therapies is an attractive means of reducing
cholesterol absorption.

SUMMARY

Novel combination therapies for coronary artery disease
seek to modify risk factors associated with the initiation
and progression of atherosclerosis. Statin therapy is ef-
fective at lowering LDL-cholesterol and reducing CAD-
related morbidity and mortality (10,205-210). Unfortu-
nately, statin use can only reduce cardiovascular events
by 33% in the most responsive patient groups, leaving a
great deal of cardiovascular risk to be treated (211).
Recently, there have been a number of excellent reviews
of the clinical promise of raising HDL and reducing
inflammation as alternate routes to lowering CAD
(72,212-214). Clinical guidelines, driven by empirical
evidence of reduced mortality, continue to call for lower
levels of LDL-cholesterol in high-risk CAD patients.
There 1s a need to identify new pharmacological targets
that can be treated in tandem with statins to reduce
LDL-cholesterol. In this paper, we summarize the op-
portunities and challenges for drug development of cho-
lesterol absorption inhibitors, with emphasis on the
advantages of intestine-specific therapies.
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